Allowable Stress Design

Load Combinations

(1) D
(2) D + L
(3) D + (L_r or S or R)
(4) D + 0.75L + 0.75(L_r or S or R)
(5) D + 0.6W
(6) D + 0.75L + 0.75(0.6W) + 0.75(L_r or S or R)
(7) 0.6D + 0.6W
(8) 1.0D + 0.7E_v + 0.7E_h
(9) 1.0D + 0.525E_v + 0.525E_h + 0.75L + 0.75S
(10) 0.6D - 0.7E_v + 0.7E_h

It shall be permitted to replace 0.6D with 0.9D in combination (10) for the design of Special Reinforced Masonry Shear Walls

Assumptions:
1. Plane sections remain plane
2. Stress-strain relationship for masonry is linear in compression
3. All masonry in tension is neglected
4. Perfect bond between steel and grout
5. Member is straight prismatic section

Notation:
Lower case: calculated stress, f_s
Upper case: allowable stress, F_s
F_h is allowable compressive stress to resist flexure only. Notes use F_m for allowable compressive stress to resist combinations of flexure and axial load.
Flexural Members

To find neutral axis, equate moments of areas about neutral axis.

\[(bkd) \left(\frac{1}{2} kd \right) = (n\rho bd)(d - kd)\]

\[nA_s = npbd\]

Transformed Section

Steel stress: \(f_s = \frac{M}{A_s j d}\)

Masonry stress: \(f_m = \frac{2M}{b(kd)(jd)}\)

Allowable moment:

Steel: \(M_s = A_s F_s j d\)
Masonry: \(M_m = b(kd) \frac{f_m}{2} (jd)\)

Example: Masonry Beam

Given: \(M = 340 \text{k-in}; \) Grade 60 steel, \(f_m' = 2000 \text{psi}; \) 8 in CMU; Type S mortar; 4 course high beam \((d = 28 \text{ in.}); \) #6 rebar

Required: Is section adequate?

Solution:

\[F_m = \]
\[F_s =\]
\[E_m = 900f_m' = 1.80 \times 10^6 \text{psi}\]
\[E_s = 20 \times 10^6 \text{psi}\]
\[n = E_s/E_m = \]
\[\rho = A_s/bd =\]
\[np = 16.1(0.00206) = 0.0332\]

\[k = \sqrt{(np)^2 + 2np} - np = \sqrt{(0.0332)^2 + 2(0.0332)} - 0.0332 =\]

\[j = 1 - \frac{k}{3} = 1 - \frac{0.227}{3} =\]
Example: Masonry Beam

Given: \(M = 340 \text{k-in} \); Grade 60 steel, \(f_m' = 2000 \text{psi} \); 8 in CMU; Type S mortar; 4 course high beam \((d = 28 \text{ in.})\); #6 rebar

Required: Is section adequate?

Solution:

- \(F_m = 0.45(2000 \text{psi}) = 900 \text{psi} \)
- \(F_s = 32000 \text{psi} \)
- \(E_m = 900f_m' = 1.80 \times 10^6 \text{psi} \)
- \(E_s = 20 \times 10^6 \text{psi} \)
- \(n = E_s/E_m = 16.1 \)
- \(\rho = A_s/bd = 0.44 \text{in.}^2/(7.625\text{in.} \times 28 \text{in.}) = 0.00206 \)
- \(n\rho = 16.1(0.00206) = 0.0332 \)

\[
k = \sqrt{(n\rho)^2 + 2n\rho - n\rho} = \sqrt{(0.0332)^2 + 2(0.0332) - 0.0332} = 0.227
\]

\[
j = 1 - \frac{k}{3} = 1 - \frac{0.227}{3} = 0.924
\]

What is maximum moment beam could carry?

- \(M_s = A_sF_s/d = (0.44 \text{in.}^2)(32 \text{ksi})(0.924)(28 \text{in.}) = 364 \text{k \cdot in.} \)

- \(M_m = b(kd)\frac{F_m}{2}\frac{900 \text{psi}}{2}(0.924)(28 \text{in.})^2 = 564 \text{k \cdot in.} \)

\(M_{\text{all}} = 364 \text{ kip-in} \)
Example: Masonry Beam

\[f_s = \frac{M}{A_s d} = \frac{340 \text{ kips} \cdot \text{in.}}{(0.44 \text{ in.}^2)(0.924)(28 \text{ in.})} = 29.8 \text{ksi} \leq 32 \text{ksi} \quad \text{OK} \]

\[f_m = \frac{2M}{b(kd)(jd)} = \frac{2(340 \text{ kips} \cdot \text{in.})}{7.625 \text{ in.}(0.227)(28 \text{ in.})(0.924)(28 \text{ in.})} = 543 \text{psi} \leq 900 \text{psi} \quad \text{OK} \]

Beam is good

What is maximum moment beam could carry?

\[M_s = A_s F_s d = (0.44 \text{ in.}^2)(32 \text{ksi})(0.924)(28 \text{ in.}) = 364 \text{kips} \cdot \text{in.} \]

\[M_m = b(kd) \frac{F_m}{2}(jd) = 7.625 \text{ in.}(0.227) \frac{900 \text{psi}}{2}(0.924)(28 \text{ in.})^2 = 564 \text{kips} \cdot \text{in.} \]

\[M_{all} = 364 \text{ kip-in} \]

Masonry Beam - Parametric Study

![Graph showing the relationship between allowable moment (M_allow) and area of steel (A_s) for different masonry strengths (f_m)].

- \(f_m = 3200 \text{ psi} \)
- \(f_m = 2800 \text{ psi} \)
- \(f_m = 2400 \text{ psi} \)
- \(f_m = 2000 \text{ psi} \)

- \(d = 20 \text{ inch} \)
- \(b = 7.625 \text{ inch} \)
Design Procedure

1. Assume value of j (or k). Typically $0.85 < j < 0.95$.
2. Determine a trial value of $A_{s,reqd}$.
 $$A_{s,reqd} = \frac{M}{(F_s j d)}$$
 Choose reinforcement.
3. Determine k and j; steel stress and masonry stress.
4. Compare calculated stresses to allowable stresses.
5. If masonry stress controls design, consider other options (such as change of member size, or change of f'_{m}). Reinforcement is not being used efficiently.
Design Procedure

Calculate

\[kd = 3 \left[d - \sqrt{\left(\frac{d}{2}\right)^2 - \frac{2M}{3F_b t_{sp}}} \right] \]

Is \(k \geq k_{bal} \)?

For Grade 60 steel, CMU \(k_{bal} = 0.312 \)

YES

\[A_{s,reqd} = \frac{F_b (kd) t_{sp}}{2nF_b \left(\frac{1}{k} - 1 \right)} \]

Compression controls

NO

\[A_{s,reqd} = \frac{M}{F_s d \left(1 - k \right)} \]

\[\zeta = \frac{A_{s,reqd} F_s n}{F_s t_{sp}} \]

\[(kd)_2 = \sqrt{\zeta^2 + 2\zeta d - \zeta} \]

Tension controls

Iterate. Use \((kd)_2\) as new guess and repeat.

Example: Beam Design

Given: 10 ft. opening; dead load of 1.5 kip/ft; live load of 1.5 kip/ft; 24 in. high; Grade 60 steel; Type S masonry cement mortar; 8 in. CMU; \(f'_m = 2000 \) psi

Required: Design beam

Solution:

1. **5.2.1.3:** Length of bearing of beams shall be a minimum of 4 in.; **typically assumed to be 8 in.**

2. **5.2.1.1.1** Span length of members not built integrally with supports shall be taken as the clear span plus depth of member, but need not exceed distance between center of supports.
 - Span = 10 ft + 2(4 in.) = 10.67 ft

3. **5.2.1.2** Compression face of beams shall be laterally supported at a maximum spacing of:
 - 32 multiplied by the beam thickness. 32(7.625 in.) = 244 in. = 20.3 ft
 - 120\(b^2/d \). 120(7.625 in.)^2 / (20 in.) = 349 in. = 29.1 ft
Example: Beam Design

Load
Weight of fully grouted normal weight: 83 psf

\[w = D + L = \left(1.5 \frac{k}{ft} + 0.083 \frac{k}{ft^2} (2ft) \right) + 1.5 \frac{k}{ft} = 3.17 \frac{k}{ft} \]

Moment

\[M = \frac{wL^2}{8} = \frac{(3.17\frac{k}{ft})(10.67ft)^2}{8} = 45.1k \cdot ft \]

Determine \(kd \) Assume compression controls

\[kd = 3 \left[\frac{d}{2} - \sqrt{\left(\frac{d}{2} \right)^2 - \frac{2M}{3F_b b}} \right] = 3 \left[\frac{20in.}{2} - \sqrt{\left(\frac{20in.}{2} \right)^2 - \frac{2(45.2k-ft)(12in.)}{3(0.90ksi)(7.625in.)}} \right] = 9.32in. \]

Check if compression controls

\[k = \frac{kd}{d} = \frac{9.32in.}{20in.} = 0.466 > 0.312 \text{ Compression controls} \]

Calculate modular ratio, \(n \)

\[n = \frac{E_s}{E_m} = \frac{E_s}{900f_m^t} = \frac{29000ksi}{900(2.0ksi)} = 16.1 \]

Example: Beam Design

Find \(A_{s,reqd} \)

Req'd area of steel

\[A_{s,reqd} = \frac{F_b (kd)b}{nF_b \left(\frac{1}{k} - 1 \right)} = \frac{0.90ksi(9.31in.)7.625in.}{16.1(0.90ksi) \left(\frac{1}{0.466} - 1 \right)} = 1.94in.^2 \]

Use 2 - #9 (\(A_s = 2.00 \text{ in}^2 \))

Now that is some reinforcement that would make me proud!
Example: ASD vs. SD

<table>
<thead>
<tr>
<th>Dead Load (k/ft) (superimposed)</th>
<th>Live Load (k/ft)</th>
<th>Required A_s (in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>ASD 0.34, SD 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.34 (f'_m = 1.5 \text{ ksi})$, $0.26 (f'_m = 1.5 \text{ ksi})$</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>ASD 0.64, SD 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.65 (f'_m = 1.5 \text{ ksi})$, $0.52 (f'_m = 1.5 \text{ ksi})$</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>ASD 1.94, SD 0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5.09 (f'_m = 1.5 \text{ ksi})$, $0.80 (f'_m = 1.5 \text{ ksi})$</td>
</tr>
</tbody>
</table>

ASD: Allowable tension controls for 0.5 k/ft and 1 k/ft.

Partially Grouted Walls

A. Neutral axis in flange; design and analysis for solid section
B. Neutral axis in web

\[
k = \frac{b}{b'} \sqrt{\frac{t_f}{a^2} \left(1 - \frac{b'}{b} \right) + (\rho n)^2 + 2\rho n \left(\frac{t_f}{d} + \frac{b'}{b} - \frac{b'b'}{b'd} \right) - \rho n \frac{b}{b'} + \left(1 - \frac{b}{b'} \right) \frac{t_f}{d}}
\]

\[
C_f = \frac{f_m}{2} \left(\frac{2kd - t_f}{kd} \right) b t_f
\]

\[
C_w = \frac{f_m}{2} \left(\frac{kd - t_f}{kd} \right) b'(kd - t_f)
\]

\[
j_f = 1 - \frac{t_f}{3d} \left(\frac{3kd - 2t_f}{2kd - t_f} \right)
\]

\[
j_w = 1 - \frac{2t_f + kd}{3d}
\]

\[
M = C_f j_f d + C_w j_w d
\]

\[
f_m = F_m \text{ if masonry controlling}
\]

\[
f_m = F_s k / (n(1 - k)) \text{ if steel controlling}
\]
Example: Partially Grouted Walls

Given: 8 in CMU wall; 16 ft high; Grade 60 steel, \(f_m' = 2000 \text{ psi} \); Lateral wind load of \(w_u = 30 \text{ psf} \) (factored)

Required: Reinforcing (place in center of wall)

Solution:

\[M = \frac{wh^2}{8} = \frac{0.6(30 \text{ lb/ft})(12 \text{ in./ft})(16 \text{ ft})^2}{8} = 6912 \text{ lb-in./ft} = 576 \text{ lb-ft/ft} \]

\[F_b = 0.45(2000 \text{ psi}) = 900 \text{ psi} \]

\[F_s = 32000 \text{ psi} \]

\[n = \frac{E_s}{E_m} = 16.1 \]

Determine \(kd \) Assume compression controls

\[kd = 3 \left[\frac{d^2}{2} - \sqrt{\left(\frac{d}{2} \right)^2 - \frac{2M}{3F_b}} \right] = 3 \left[\frac{3.81 \text{ in.}^2}{2} - \sqrt{\left(\frac{3.81 \text{ in.}}{2} \right)^2 - \frac{2(0.576 \text{ ft})}{3(0.90 \text{ ksi})}} \right] = 0.346 \text{ in.} \]

Check if compression controls

\[k = \frac{kd}{d} = \frac{0.346 \text{ in.}}{3.81 \text{ in.}} = 0.091 < 0.312 \]

Tension controls

<table>
<thead>
<tr>
<th>(kd) (in.)</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.346</td>
<td>0.699</td>
<td>0.709</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k)</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091</td>
<td>0.183</td>
<td>0.183</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A_{s,reqd} = \frac{M}{F_s d (1 - \frac{k^2}{3})}) (in.²)</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0584</td>
<td>0.0603</td>
<td>0.0603</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\zeta = \frac{A_{s,reqd}F_s}{F_s \zeta sp}) (in.)</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0784</td>
<td>0.0810</td>
<td>0.0810</td>
<td></td>
</tr>
</tbody>
</table>

\[(kd)_2 = \sqrt{\zeta^2 + 2\zeta d} - \zeta \] (in.)

0.699 0.709 0.709

Use # 4 @ 40 inches \((A_s = 0.060 \text{ in}^2/\text{ft})\)

(close enough)
Axial Strength

Allowable Compressive Force (8.3.4.2.1)

\[P_a = (0.25f_m' A_n + 0.65A_{st} F_s) \left[1 - \left(\frac{h}{140r} \right)^2 \right] \text{ for } \frac{h}{r} \leq 99 \]

\[P_a = (0.25f_m' A_n + 0.65A_{st} F_s) \left(\frac{70r}{h} \right)^2 \text{ for } \frac{h}{r} > 99 \]

\(A_{st} \) is area of laterally tied steel

Interaction Diagram

- Assume strain/stress distribution
 - For \(k > k_{bal} \) Set masonry strain, find steel strain
 - Masonry strain = \(F_m/E_m \) = 0.0005 for CMU
 - For \(k \leq k_{bal} \) Set steel strain, find masonry strain
 - Steel strain = \(F_s/E_s \) = 0.00110 for Grade 60
- Compute forces in masonry and steel
- Sum forces; sum moments about centerline

Grade 60 steel

\[k_{bal} = \frac{F_m}{F_m + F_s/n} = \frac{F_m}{E_m + F_s/E_s} = \frac{0.45f_v'}{900f_m'} + \frac{32kst}{29000kst} = 0.312 \]
Example: Interaction Diagram

Given: 12 ft high CMU bearing wall, Type S masonry cement mortar; Grade 60 steel in center of wall; #4 @ 48 in.; partial grout; \(f_m' = 2000 \text{ psi} \)

Required: Interaction diagram in terms of capacity per foot

Pure Moment: \(n = 16.1 \quad \rho = 0.00109 \quad n\rho = 0.0176 \)

Depth to NA \(k \)

\[
k = \sqrt{(n\rho)^2 + 2n\rho - n\rho} = \sqrt{(0.0176)^2 + 2(0.0176) - 0.0176} = 0.171
\]

Internal lever arm \(j \)

\[
j = 1 - \frac{k}{3} = 1 - \frac{0.171}{3} = 0.943
\]

Steel moment \(M_s \)

\[
M_s = A_s F_s j d = \left(0.05\frac{\text{in}^2}{\text{ft}}\right)(32\text{ksi})(0.943)(3.81\text{in.}) = 5.75\frac{k\cdot\text{in.}}{\text{ft}}
\]

Masonry moment \(M_m \)

\[
M_m = b(kd)\frac{f_m'}{2}(jd) = 12\frac{\text{in}}{\text{ft}}\left(0.171\right)^{\frac{900\text{psi}}{2}}(0.943)(3.81\text{in.})^2
\]

\[
= 12.65\frac{k\cdot\text{in.}}{\text{ft}}
\]

Allowable \(M \)

\[
M = 5.75\frac{k\cdot\text{in.}}{\text{ft}} = 0.479\frac{k\cdot\text{ft}}{\text{ft}}
\]

Example: Interaction Diagram

Pure Axial:

\[4.3.2\text{ Radius of gyration} \]

Radius of gyration shall be computed using average net cross-sectional area of the member considered.

NCMA TEK 14-1B Section Properties of Concrete Masonry Walls

\(r = 2.66 \text{ in.} \quad A_n = 40.7\text{in.}^2/\text{ft} \)

Slenderness \(h/r \)

\[
h \quad \frac{144\text{in.}}{2.66\text{in.}} = 54.1 \quad \leq 99
\]

Axial load \(P_a \)

\[
P_a = \left(0.25f_m'A_n + 0.65A_s F_s\right) \left[1 - \left(\frac{h}{140r}\right)^2\right]
\]

\[
P_a = \left(0.25(2.0\text{ksi})\left(40.7\frac{\text{in.}^2}{\text{ft}} + 0\right) \left[1 - \left(\frac{54.1}{140}\right)^2\right\right]
\]

\[
= 17.2\frac{k}{\text{ft}}
\]

Allowable \(P \)

\[
P = 17.2\frac{k}{\text{ft}}
\]
Example: Interaction Diagram

Balanced:

Masonry force \(C_m \)

Tension force \(T \)

Axial force \(P \)

Moment \(M \)

\[
kd = \frac{0.0005}{0.0005 + 0.00110} = 3.81 \text{ in.} = 1.19 \text{ in.}
\]

\(kd < 1.25 \text{ in.} \)

N.A. in face shell

\[
P = 4.83 \frac{k}{ft} \quad M = 1.83 \frac{k \cdot ft}{ft}
\]
Example: Interaction Diagram

Below Balanced:

\[kd = 1.00 \text{ in.} \]

\[\varepsilon_m = \frac{1.00 \text{ in.}}{3.81 \text{ in} - 1.00 \text{ in.}} \cdot 0.00110 = 0.000391 \]

\[f_m = E_m \varepsilon_m = 1800 \text{ksi} (0.000391) = 0.704 \text{ksi} \]

Masonry force \(C_m \):

\[C_m = \frac{1}{2} f_m (kd)b = \frac{1}{2} (0.704 \text{ksi})(1.00 \text{in.}) \left(12 \frac{\text{in.}}{\text{ft}} \right) = 4.22 \frac{k}{\text{ft}} \]

Tension force \(T \):

\[T = f_s A_s = (32 \text{ksi}) \left(0.05 \frac{\text{in.}^2}{\text{ft}} \right) = 1.6 \frac{k}{\text{ft}} \]

Axial force \(P \):

\[P = C_m - T = (4.22 - 1.60) \frac{k}{\text{ft}} = 2.62 \frac{k}{\text{ft}} \]

Moment \(M \):

\[M = 4.22 \frac{k}{\text{ft}} \left(3.81 \text{in.} - \frac{1.00 \text{in.}}{3} \right) = 14.7 \frac{k \cdot \text{in.}}{\text{ft}} = 1.22 \frac{k \cdot \text{ft}}{\text{ft}} \]

\[P = 2.62 \frac{k}{\text{ft}} \quad M = 1.22 \frac{k \cdot \text{ft}}{\text{ft}} \]

Allowable Stress Design

Example: Interaction Diagram

Above Balanced:

\[kd = 2.00 \text{ in.} \]

\[\varepsilon_s = \frac{3.81 \text{in.} - 2.00 \text{in.}}{2.00 \text{in.}} \cdot 0.0005 = 0.00045 \]

\[f_s = E_s \varepsilon_s = 29000 \text{ksi} (0.00045) = 13.1 \text{ksi} \]

Face shell force \(C_m \):

\[C_m = \frac{1}{2} (0.900 + 0.338) \text{ksi} (1.25 \text{in.}) \left(12 \frac{\text{in.}}{\text{ft}} \right) = 9.28 \frac{k}{\text{ft}} \]

Web force \(C_m \):

\[C_m = \frac{1}{2} (0.338 \text{ksi})(2.00 \text{in.} - 1.25 \text{in.}) \left(2 \frac{\text{in.}}{\text{ft}} \right) = 0.25 \frac{k}{\text{ft}} \]

Tension force \(T \):

\[T = f_s A_s = (13.1 \text{ksi}) \left(0.05 \frac{\text{in.}^2}{\text{ft}} \right) = 0.66 \frac{k}{\text{ft}} \]

Allowable Stress Design
Example: Interaction Diagram

Axial force P

$$ P = C_{m1} + C_{m2} - T = (9.28 + 0.25 - 0.66) \frac{k}{ft} = 8.87 \frac{k}{ft} $$

Moment M

$$ M = 9.28 \frac{k}{ft} (3.81\text{ in.} - 0.53\text{ in.}) + 0.25 \frac{k}{ft} (3.81\text{ in.} - 1.50\text{ in.}) $$

$$ M = 31.0 \frac{k\cdot \text{in}}{ft} = 2.58 \frac{k\cdot \text{ft}}{ft} $$

$P = 8.87 \frac{k}{ft}$

$M = 2.58 \frac{k\cdot \text{ft}}{ft}$
Approximate Interaction Diagram

Three Point Approximation

- Zero axial load; moment capacity
- \(kd \) = flange thickness
- Zero moment; axial capacity

Design Procedure

\[
kd = 3 \left[d - \frac{\left(\frac{d}{2} \right)^2}{\sqrt{\left(\frac{d}{2} \right)^2 + 2(P(d - d_v/2) + M) / 3F_m t_{sp}}} \right]
\]

Is \(k \geq k_{bal} \)?

- For Grade 60 steel, CMU \(k_{bal} = 0.312 \)

Is \(k \geq k_{bal} \)?

\[k_{bal} = \frac{F_m}{F_m + F_s/n} \]

YES

\[
A_{s,reqd} = \frac{F_m(kd)t_{sp}}{2} - P
\]

Compression controls

NO

\[
M' = P \left(\frac{d_v}{2} - \frac{kd}{3} \right)
\]

\[
A_{s,reqd} = \frac{M - M'}{F_s d \left(1 - \frac{k}{3} \right)}
\]

\[
\zeta = \frac{(P + A_{s,reqd}F_s)n}{F_s t_{sp}}
\]

\[
(kd)^2 = \sqrt{\zeta^2 + 2\zeta d - \zeta}
\]

Iterate. Use \((kd)^2\) as new guess and repeat.

Tension controls
Derivation of Design Equations

Sum forces: \[
\frac{1}{2} (kd) t_{sp} f_m - A_s f_s = P
\]

Sum moments: \[
\frac{1}{2} (kd) t_{sp} f_m \left(\frac{d_y}{2} - \frac{kd}{3} \right) + A_s f_s \left(d - \frac{d_y}{2} \right) = M
\]

If the masonry stress controls, set \(f_m = F_m\), solve for \(A_s f_s\) from sum of forces, and substitute for \(A_s f_s\) in moment equation.

\[
\frac{1}{2} (kd) t_{sp} f_m \left(\frac{d_y}{2} - \frac{kd}{3} \right) + A_s f_s \left(d - \frac{d_y}{2} \right) (d - \frac{d_y}{2}) = M
\]

This is a quadratic equation in \(kd\), which can be solved to obtain:

\[
kd = 3 \left[\frac{d}{3} - \sqrt{\left(\frac{3}{d} \right)^2 - \frac{2(P(d-d_{w}/2)+M)}{3F_m t_{sp}}} \right]
\]

Solve for \(A_{s,reqd}\)

\[
A_{s,reqd} = \frac{F_m (kd) t_{sp} - P}{2 \sqrt{F_m \left(\frac{1}{k} - 1 \right)}}
\]

Derivation of Design Equations

If the steel stress controls, set \(f_s = F_s\), and find \(f_m\) in terms of \(F_s\).

\[
f_m = E_m \varepsilon_m = E_m \frac{kd}{d-kd} \varepsilon_s = E_m \frac{kd}{d-kd} E_s = \frac{F_s}{n} \frac{kd}{d-kd}
\]

Substitute into sum of forces, and solve for \(A_s f_s\).

\[
A_s f_s = \frac{1}{2} (kd) t_{sp} f_m - P = \frac{1}{2} (kd) t_{sp} \left(\frac{F_s}{n} \frac{kd}{d-kd} - P \right) (d - \frac{d_y}{2}) = P
\]

Now substitute into sum of moments

\[
\frac{1}{2} (kd) t_{sp} f_m \left(\frac{d_y}{2} - \frac{kd}{3} \right) + \frac{1}{2} (kd) t_{sp} \left(\frac{F_s}{n} \frac{kd}{d-kd} - P \right) \left(d - \frac{d_y}{2} \right) = M
\]

This is a cubic equation in \(kd\). Although there are analytical ways to solve a cubic equation, numerical solutions are usually the easiest.

\[
\frac{t_{sp} F_s}{6n} [kd]^3 - \frac{t_{sp} d F_s}{2n} [kd]^2 - \left(P \left(d - \frac{d_y}{2} \right) + M \right) [kd] + \left(P \left(d - \frac{d_y}{2} \right) + M \right) d = 0
\]

Solve for \(A_{s,reqd}\)

\[
A_{s,reqd} = \frac{1}{2} (kd) t_{sp} \left(\frac{1}{n} \frac{kd}{d-kd} \right) \frac{P}{F_s}
\]
Example: Pilaster

Given: Nominal 16 in. wide x 16 in. deep CMU pilaster; $f'_m = 2000$ psi; Grade 60 bar in each corner, center of cell; Effective height = 24 ft; Dead load of 9.6 kips and snow load of 9.6 kips act at an eccentricity of 5.8 in. (2 in. inside of face); Factored wind load of 26 psf (pressure and suction) and uplift of 8.1 kips ($e = 5.8$ in.); Pilasters spaced at 16 ft on center; Wall is assumed to span horizontally between pilasters; No ties.

Required: Determine required reinforcing using allowable stress design.

Solution:

Vertical Spanning

- $e = 5.8$ in
- $d = 11.8$ in
- $E_m = 1800$ ksi
- $n = 16.1$

Lateral Load
- $w = 0.6(26$ psf$)(16$ ft$) = 250$ lb/ft

$P_f = 0.6(9.6k) - 0.6(8.1k) = 0.9k$
$M_f = 0.9k(5.8$ in$.) = 5.2k \cdot$ in

Location of maximum moment

$$x = \frac{h}{2} - \frac{M_f}{wh} = \frac{288$ in$}{2} - \frac{5.2$ k-in$}{0.250$ k-ft$(24$ ft$)} = 143.1$ in.

Maximum moment

$$M_{max} = \frac{M_f}{2} + \frac{wh^2}{8} + \frac{M_f^2}{2wh^2}$$
$$= \frac{5.2$ k-in$}{2} + \frac{0.0208$ k-in$}{8} + \frac{(5.2$ k-in$)^2}{2(0.0208$ k-in$)(288$ in$)^2} = 218$ k-in.

Find axial force at this point. Include weight of pilaster (200 lb/ft).

$$P = 0.9k + 0.6\left(0.20 \frac{k}{ft}\right)(143.1$ in$.) \frac{1$ ft$}{12$ in$} = 2.3k$$

Design for $P = 2.3k$, $M = 218$ k-in.
Example: Pilaster

Assume compression controls; Determine kd

$$kd = 3 \left[\frac{d}{2} - \sqrt{\left(\frac{d}{2} \right)^2 - \frac{2(P(d_d+L))/3F_{tsp}}{2}} \right]$$

$$= 3 \left[\frac{11.8\text{in.}}{2} - \sqrt{\left(\frac{11.8\text{in.}}{2} \right)^2 - \frac{2(2.3k(11.8\text{in.} - 15.6\text{in.}/2) + 218k\text{in.})\left(\frac{12\text{in.}}{\text{ft}}\right)}{3(0.90\text{ksi})(15.6\text{in.})}} \right] = 3.00\text{in.}$$

Determine k

$$k = \frac{kd}{d} = \frac{3.00\text{in.}}{11.81\text{in.}} = 0.254 < 0.312$$

Tension controls

Example: Pilaster

<table>
<thead>
<tr>
<th>Equation / Value</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>kd (in.)</td>
<td>3.00</td>
<td>3.38</td>
<td>3.40</td>
</tr>
<tr>
<td>k</td>
<td>0.254</td>
<td>0.286</td>
<td>0.288</td>
</tr>
<tr>
<td>$M' = P \left(\frac{d_d - kd}{3} \right)$ (k-in.)</td>
<td>15.6</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>$A_{s,reqd} = \frac{M - M'}{F_s d (1 - \frac{k}{3})}$ (in.2)</td>
<td>0.585</td>
<td>0.593</td>
<td>0.593</td>
</tr>
<tr>
<td>$\zeta = \frac{(P + A_{s,reqd} F_s)}{F_s t_{sp}}$ (in.)</td>
<td>0.678</td>
<td>0.686</td>
<td>0.686</td>
</tr>
<tr>
<td>$(kd)_2 = \sqrt{\zeta^2 + 2\zeta d - \zeta}$ (in.)</td>
<td>3.38</td>
<td>3.40</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Try 2 - #5, 4 total, one in each cell
Example: Pilaster

![Graph showing Allowable Values for different load combinations and their corresponding axial and moment values.]

- **Allowable Values**
 - $D + 0.75(0.6W) + 0.75S$
 - $P = 15.3k$
 - $M = 16.8k$-ft
 - $D + S$
 - $P = 19.2k$
 - $M = 16.8k$-ft
 - $0.6D + 0.6W$
 - $P = 7.1k$
 - $M = 19.2k$-ft
 - $0.6D + 0.6W$
 - $P = 2.3k$
 - $M = 18.2k$-ft

Example: Effect of f_m'

![Graph showing Allowable Values for different values of f_m' and their corresponding axial and moment values.]

- **Allowable Values**
 - $f_m' = 2000$ psi
 - $f_m' = 1500$ psi

Applied Loads
- Red squares

Balanced Point
- Green squares
Example: ASD vs. Strength Design

![Graph showing Allowable Values]

Example: Bearing Wall

Given: 8 in. CMU wall; Grade 60 steel; Type S masonry cement mortar; \(f_m' = 2000 \text{ psi} \); roof forces act on 3 in. wide bearing plate at edge of wall.

Required: Reinforcement

Solution:

Estimate reinforcement

\[
M \sim \frac{wh^2}{8} = \frac{0.6(0.032\text{ksf})(18\text{ft})^2}{8} = 0.778 \text{k-ft/ft}
\]

Assume \(j = 0.95 \)

\[
A_{s,reqd} = \frac{M}{F_{s,j}d} = 0.080 \text{ in.}^2/\text{ft}
\]

Try #5 @ 48 in. (0.078 in.\(^2\)/ft)

Wall weight is 38 psf for 48 in. grout spacing

Cross-section of top of wall

Determine eccentricity

\(e = 7.625\text{in}/2 - 1.0 \text{ in.} = 2.81 \text{ in.} \)
Example: Bearing Wall

Check 0.6D+0.6W

Find force at top of wall
\[P_f = 0.6 \left(\frac{0.5}{\text{kip/ft}} \right) + 0.6 \left(-\frac{0.36}{\text{kip/ft}} \right) = 0.084 \text{ kip/ft} \]

Find force at midheight
\[P = 0.084 \text{ kip/ft} + 0.6(0.040\text{ksf})(2.67\text{ft} + 9\text{ft}) = 0.364 \text{ kip/ft} \]

Find moment at top of wall
\[M_f = 0.084 \text{ kip/ft} \left(\frac{2.81}{12} \text{ ft} \right) - 0.6(0.032\text{ksf})(2.67\text{ft})^2 = -0.049 \frac{\text{k-ft}}{\text{ft}} \]

Find moment at midheight
\[M = \frac{wh^2}{8} + \frac{M_f}{2} = \frac{0.6(0.032\text{ksf})(18\text{ft})^2}{8} + \frac{-0.049\frac{\text{k-ft}}{\text{ft}}}{2} = 0.753 \frac{\text{k-ft}}{\text{ft}} \]

<table>
<thead>
<tr>
<th>Load Comb.</th>
<th>(P_f) (kip/ft)</th>
<th>(P) (kip/ft)</th>
<th>(M_f) (k-ft/ft)</th>
<th>(M) (k-ft/ft)</th>
<th>(A_{s,reqd}) (in.(^2/\text{ft}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6D+0.6W</td>
<td>0.084</td>
<td>0.364</td>
<td>-0.049</td>
<td>0.753</td>
<td>0.068</td>
</tr>
<tr>
<td>D+0.6W</td>
<td>0.284</td>
<td>0.751</td>
<td>-0.002</td>
<td>0.777</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Use #5 @ 48 in. (0.078 in.\(^2/\text{ft}\))

Although close to #5 @ 56 in. (0.066in.\(^2/\text{ft}\)), a wider spacing also reduces wall weight

Moment is 90% of allowable moment;
In SD factored moment was 91% of design moment

Example: Bearing Wall

Sample Calculations: 0.6D+0.6W

1. \(k\text{bal} = 0.312; \ k\text{dibal} = 1.19\text{in.} \)
2. Assume masonry controls.
 Determine \(kd \).
 Since 0.478 in. < 1.18 in.
tension controls.
3. Iterate to find \(A_{s,reqd} \).

\[
k d = 3 \left[\frac{d}{2} - \frac{\left(\frac{3.81\text{in.}}{2} \right)^2}{\left(\frac{3.81\text{in.}}{2} \right)^2 - 2\left(\frac{0.753\frac{\text{k-ft}}{\text{R}}} {3(0.90\text{ksi})}\right)\left(\frac{12\text{in.}}{\text{R}} \right)} \right] = 0.457\text{in.}
\]

For centered reinforcement, \((d - d_v/2) = 0\)

<table>
<thead>
<tr>
<th>Equation / Value</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kd) (in.)</td>
<td>0.457</td>
<td>0.791</td>
</tr>
<tr>
<td>(M' = P(d_v/2 - kd/3)) (k-ft/ft)</td>
<td>0.1110</td>
<td>0.1076</td>
</tr>
<tr>
<td>(A_{s,reqd} = \frac{M' - M_t}{F_s d \left(1 - \frac{k}{3} \right)}) (in.(^2/\text{ft}))</td>
<td>0.0658</td>
<td>0.0682</td>
</tr>
<tr>
<td>(\zeta = \frac{(P + A_{s,reqd} F_s) n}{F_s t_{sp}}) (in.)</td>
<td>0.1036</td>
<td></td>
</tr>
<tr>
<td>((kd)^2 = \sqrt{\zeta^2 + 2\zeta d - \zeta}) (in.)</td>
<td>0.791</td>
<td></td>
</tr>
</tbody>
</table>
Example: Bearing Wall

Allowable Shear Stress:

\[F_v = (F_{vm} + F_{vs})\gamma_g \]

Allowable Masonry Stress:

\[F_{vm} = \frac{1}{2} \left(4.0 - 1.75 \left(\frac{M}{Vd_v} \right) \sqrt{f_m'} \right) + 0.25 \frac{P}{A_n} \]

Allowable Steel Stress:

\[F_{vs} = 0.5 \left(\frac{A_v F_s d_v}{A_{nv} S} \right) \]

Maximum Shear Stress:

\[F_v \leq \left(3\sqrt{f_m'} \right)\gamma_g \quad (M/Vd_v) \leq 0.25 \]

\[F_v \leq \left(2\sqrt{f_m'} \right)\gamma_g \quad (M/Vd_v) \geq 1.0 \]

\[F_v \leq \left(\frac{2}{3} \left(5 - 2 \frac{M}{Vd_v} \right) \sqrt{f_m'} \right)\gamma_g \quad 0.25 < (M/Vd_v) < 1.0 \]

Special Reinforced Shear Walls

\[F_{vm} = \frac{1}{4} \left(4.0 - 1.75 \left(\frac{M}{Vd_v} \right) \sqrt{f_m'} \right) + 0.25 \frac{P}{A_n} \]

Masonry allowable shear stress decreased by a factor of 2, from ½ to ¼.

Seismic design load required to be increased by 1.5 for shear

Maximum reinforcement: Shear walls having

- \[M/(Vd_v) \geq 1 \] and
- \[P > 0.05f_m' A_n \]

\[\rho_{max} = \frac{n f_m'}{2 f_y \left(n + \frac{f_y}{f_m'} \right)} \]

For distributed reinforcement, \(\rho \) is the total area of tension reinforcement divided by \(bd \).
Design: Distributed Reinforcement

Calculate

\[k = \frac{M + P \frac{d_v}{6}}{\frac{1}{3} d_v F_b t_{sp} - P \frac{d_v}{3}} \]

Is \(k \geq k_{bat} \)?

\[A_{s,reqd} = \frac{\frac{1}{2} k d_v F_b t_{sp} - P}{\frac{1}{2} \frac{(1 - k)^2}{k} d_v n F_b} \]

\[A_s^* = \text{distributed reinforcement (in.}^2\text{/ft)} \]

Determine \(kd \) from the quadratic equation

\[
\frac{1}{3} d_v^2 F_s t_{sp} n + P \frac{d_v}{3} k^2 + \left[M - P \frac{d_v}{6} \right] k
- \left[M + P \frac{d_v}{6} \right] = 0
\]

Solve for \(A_{s,reqd}^* \)

\[
A_{s,reqd}^* = \frac{\frac{1}{2} k d_v t_{sp} F_s \left(\frac{k}{1 - k} \right) \frac{1}{n} - P}{\frac{1}{2} (1 - k) F_s d_v}
\]

Tension controls

Example: Shear Wall

Given: 10 ft high x 16 ft long 8 in. CMU shear wall; Grade 60 steel, Type S mortar; \(f'_m = 2000 \) psi; superimposed dead load of 1 kip/ft. In-plane seismic load of 50 kips. \(S_{DS} = 0.5^\circ \) (just less than 0.5)

Required: Design the shear wall; ordinary reinforced shear wall

Solution: Check using 0.6D+0.7E load combination.

- \(M = 0.7 (50k)(10ft) = 350k \cdot ft = 4200k \cdot in. \)
- Axial load, \(P \)
 - Need to know weight of wall to determine \(P \).
 - Need to know reinforcement spacing to determine wall weight
 - Estimate wall weight as 45 psf
 - Wall weight: 45psf(10ft)(16ft) = 7.2k
 - \(D = 1 \) k/ft (16ft) + 7.2k = 23.2k
 - \(P = (0.6 - 0.7(0.2)S_{DS})D = 0.53D = 0.53(23.2k) = 12.3k \)
Example: Shear Wall

Calculate \(k \); for preliminary design purposes use full thickness of wall

\[
k = \frac{M + P \frac{d_v}{6}}{\frac{1}{3} d_v^2 F_b t_{sp} - P \frac{d_v}{3}} = \frac{4200 \text{k in.} + 12.3 \text{k} \frac{192 \text{in.}}{6}}{\frac{1}{3} (192 \text{in.})^2 (0.90 \text{ksi}) (7.625 \text{in.}) - 12.3 \text{k} \frac{192 \text{in.}}{3}} = 0.0550
\]

Since \(k < k_{bal} \) tension controls. Solve quadratic equation.

\[
\left[\frac{1}{3} d_v^2 F_s \frac{t_{sp}}{n} + P \frac{d_v}{3}\right] k^2 + \left[M - P \frac{d_v}{6}\right] k - \left[M + P \frac{d_v}{6}\right] = 0
\]

\[
\left[\frac{1}{3} (192 \text{in.})^2 (32 \text{ksi}) \frac{7.625 \text{in.}}{16.11} + 12.3 \text{k} \frac{192 \text{in.}}{3}\right] k^2 + \left[4200 \text{k in.} - 12.3 \text{k} \frac{192 \text{in.}}{6}\right] k - \left[4200 \text{k in.} + 12.3 \text{k} \frac{192 \text{in.}}{6}\right] = 0
\]

\(k = 0.147 \)

Example: Shear Wall

Calculate required area of reinforcement

\[
A_{s, reqd} = \frac{\frac{1}{2} k d_v t_{sp} F_s \left(\frac{k}{1 - k}\right) \frac{1}{n} - P}{\frac{1}{2} (1 - k) F_s d_v}
\]

\[
= \frac{\frac{1}{2} (0.147)(192 \text{in.})(7.625 \text{in.})(32 \text{ksi}) \left(\frac{0.147}{1 - 0.147}\right) \frac{1}{16.11} - 12.3 \text{k}}{\frac{1}{2} (1 - 0.147)(32 \text{ksi})(192 \text{in.})}
\]

\[
= 0.00934 \text{ in.}^2 / \text{in.} = 0.112 \text{ in.}^2 / \text{ft}
\]

Try #5 @ 32 in. (0.120 in.²/ft)

Due to module; use 40 in. (0.093 in.²/ft) for interior bars

Strength Design: #4 @ 48 in., 54% of area of steel
Example: Shear Wall

Allowable Values

- Applied Loads
- Balanced Point

Stressed to 88% of allowable

Example: ASD vs. Strength Design

- 0.7φSD: #4 @ 48 in.
- ASD: #5 @ 32,40 in.
Example: Shear Wall

Net area, \(A_{nv} \)

\[A_{nv} = 2(1.25\text{in.})(192\text{in.}) + 6(8\text{in.})(7.625\text{in.} - 2.5\text{in.}) = 726\text{in.}^2 \]

Shear Stress:

\[f_v = \frac{V}{A_{nv}} = \frac{0.7(50\text{k})}{726\text{in.}^2} = 48.2\text{psi} \]

Shear Span:

\[\frac{M}{V_{dv}} = \frac{Vh}{V_{dv}} = \frac{h}{d} = \frac{120\text{in.}}{192\text{in.}} = 0.625 \]

Max Shear:

\[F_{v,max} = \frac{2}{3} \left(5 - 2 \frac{M}{V_{dv}} \right) \sqrt{f_m'} y_g \]

\[= \frac{2}{3} (5 - 2(0.625)) \sqrt{2000\text{psi}} \times 0.75 \approx 83.8\text{psi} \]

Masonry Shear:

\[F_v = (F_{vm}) y_g = \frac{1}{2} \left[\left(4 - 1.75 \frac{M}{V_{dv}} \right) \sqrt{f_m'} + 0.25 \frac{P}{A_n} \right] y_g \]

\[= \frac{1}{2} \left[\left(4 - 1.75(0.625) \right) \sqrt{2000\text{psi}} + 0.25 \frac{12300\text{lb}}{726\text{in.}^2} \right] 0.75 \]

\[= 51.9\text{psi} \]

Example: Special Reinforced Shear Wall

Given: 10 ft high x 16 ft long 8 in. CMU shear wall; Grade 60 steel, Type S mortar; \(f_m' = 2000 \text{psi} \); superimposed dead load of 1 kip/ft. In-plane seismic load of 50 kips. \(S_{DS} = 0.5 \)

Required: Design the shear wall; special reinforced shear wall

Solution:

• Flexural reinforcement remains the same (although ASCE 7 allows a load factor of 0.9 for ASD and special shear walls)

• Design for 1.5V, or 1.5(0.7)(50 kips) = 52.5 kips (Section 7.3.2.6.1.2)

• \(f_v = 52.5\text{k}/726\text{in.}^2 = 72.3\text{psi} \)

• Maximum \(F_v = 83.8\text{psi} \) OK
Example: Special Reinforced Shear Wall

Masonry Shear:
\[
F_{vm} = \frac{1}{4} \left[(4 - 1.75 \left(\frac{M}{Vd_v} \right)) \sqrt{f_m'} \right] + 0.25 \frac{P}{A_n}
\]

\[
= \frac{1}{4} \left[(4 - 1.75(0.625)) \sqrt{2000 \text{psi}} \right] + 0.25 \frac{12300 \text{lb}}{726 \text{in.}^2} = 36.7 \text{psi}
\]

Required steel stress
\[
F_{vs,reqd} = \frac{f_v}{\gamma_g} - F_{vm} = \frac{72.3 \text{psi}}{0.75} - 36.7 \text{psi} = 59.7 \text{psi}
\]

Use #5 bars in bond beams.
Determine spacing.
\[
F_s = 0.5 \left(\frac{A_v F_s d_v}{A_{nv} s} \right) \Rightarrow s = \frac{0.5 A_v F_s d_v}{F_{vs,reqd} A_{nv}}
\]

\[
s = \frac{0.5(0.31 \text{in.}^2)(32000 \text{psi})(192 \text{in.})}{(59.7 \text{psi})(726 \text{in.}^2)} = 21.9 \text{in.}
\]

Use #5 @ 16 in.

Due to closely spaced bond beams, **fully grout wall**.

Shear Area: \(A_{nv} = 7.625 \text{in.} (192 \text{in.}) = 1464 \text{in.}^2 \)

Shear Stress: \(f_v = \frac{V}{A_{nv}} = \frac{52.5 \text{k}}{1464 \text{in.}^2} = 35.9 \text{psi} \)

Wall weight: \(81 \text{psf}(10 \text{ft})(16 \text{ft}) = 13.0 \text{k} \)

Dead load: \(D = 1 \text{ k/ft} (16 \text{ ft}) + 13.0 \text{k} = 29.0 \text{k} \)

Axial load: \(P = 0.53 D = 0.53 (29.0 \text{k}) = 15.3 \text{k} \)

Masonry Shear:
\[
F_{vm} = \frac{1}{4} \left[(4 - 1.75 \left(\frac{M}{Vd_v} \right)) \sqrt{f_m'} \right] + 0.25 \frac{P}{A_n}
\]

\[
= \frac{1}{4} \left[(4 - 1.75(0.625)) \sqrt{2000 \text{psi}} \right] + 0.25 \frac{15300 \text{lb}}{1464 \text{in.}^2} = 35.1 \text{psi}
\]
Example: Special Reinforced Shear Wall

Required steel stress

\[F_{vs,reqd} = \frac{f_v}{\gamma_g} - F_{vm} = \frac{35.9}{1.0} - 35.1 = 0.8 \text{psi} \]

Use \#4 bars in bond beams. Determine spacing.

\[F_{vs} = 0.5 \left(\frac{A_v F_se_v}{A_{nv}s} \right) \Rightarrow s = \frac{0.5 A_v F_se_v}{F_{vs,reqd} A_{nv}} \]

\[s = \frac{0.5(0.20 \text{ in.}^2)(32000 \text{ psi})(192 \text{ in.})}{(0.8 \text{ psi})(1464 \text{ in.}^2)} = 524 \text{ in.} \]

Spacing determined by prescriptive requirements

Maximum Spacing Requirements (7.3.2.6)

- minimum\{ one-third length, one-third height, 48 in. \}

\[s_{max} = \min \left\{ \frac{192 \text{ in.}}{3}, \frac{120 \text{ in.}}{3}, 48 \text{ in.} \right\} = \min \{64 \text{ in.}, 40 \text{ in.}, 48 \text{ in.} \} = 40 \text{ in.} \]

Example: Special Reinforced Shear Wall

Prescriptive Reinforcement Requirements (7.3.2.6)

- \(\rho \geq 0.0007 \) in each direction
- \(\rho_v + \rho_h \geq 0.002 \)

Vertical: \(\rho_v = \frac{6(0.31 \text{ in.}^2)}{1464 \text{ in.}^2} = 0.00127 \quad \text{OK} \)

Horizontal: \(\rho_{h,reqd} = \max \{0.002 - 0.00127, 0.0007\} = 0.00073 \)

Determine bar size for 40 in. spacing

\[A_{s,reqd} = \rho_h t_{sp} s = 0.00073(7.625 \text{ in.})(40 \text{ in.}) = 0.22 \text{ in.}^2 \]

Use \#5 @ 40 in.

An alternate is \#4 @ 32 in. (\(\rho_h = 0.00082 \))
Example: Special Reinforced Shear Wall

Section 8.3.4.4 Maximum Reinforcement

Requirements only apply to special reinforced shear walls.

No need to check maximum reinforcement since only need to check if:

- \(M/(Vd_v) \geq 1 \) and \(M/(Vd_v) = 0.625 \)
- \(P > 0.05f'_m A_n \)
 - \(0.05(2000\text{psi})(1464\text{in}^2) = 146 \text{ kips} \)
 - Assume a live load of 1 k/ft
- \(P = (1.0 + 0.7(0.2)S_{DS}) + L = (1.0 + 0.7(0.2)0.5)29k + 16k = 47.0k \)

OK

Example: Special Reinforced Shear Wall

If we needed to check maximum reinforcing, do as follows.

\[
\rho_{max} = \frac{nf'_m}{2f_y(n + \frac{f_y}{f'_m})} = \frac{16.1(2\text{ksi})}{2(60\text{ksi})\left(16.1 + \frac{60\text{ksi}}{2\text{ksi}}\right)} = 0.00582
\]

For distributed reinforcement, the reinforcement ratio is obtained as the total area of tension reinforcement divided by \(bd \). For Assume 5 out of 6 bars in tension.

\[
\rho = \frac{A_s}{bd} = \frac{5(0.31\text{in.}^2)}{7.625\text{in.}(188\text{in.})} = 0.00108 \quad \text{OK}
\]